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SUMMARY

A numerical technique for the modelling of shallow water �ow in one and two dimensions is presented
in this work along with the results obtained in di�erent applications involving unsteady �ows in complex
geometries. A cell-centred �nite volume method based on Roe’s approximate Riemann solver across
the edges of both structured and unstructured cells is presented. The discretization of the bed slope
source terms is done following an upwind approach. In some applications a problem arises when the
�ow propagates over adverse dry bed slopes, so a special procedure has been introduced to model
the advancing front. It is shown that this modi�cation reproduces exactly steady state of still water in
con�gurations with strong variations in bed slope and contour. The applications presented are mainly
related with unsteady �ow problems. The scheme is capable of handling complex �ow domains as will
be shown in the simulations corresponding to the test cases that are going to be presented. Comparisons
of experimental and numerical results are shown for some of the tests. Copyright ? 2002 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Many e�orts have been recently devoted to the development of numerical techniques for free
surface �ows. Among them, those oriented to the resolution of unsteady shallow water �ow
have been strongly in�uenced by the upwind philosophy initially introduced in Gas Dynamics.
These methods are specially suited for advection dominated problems and their implementation
is not straightforward when source terms are relevant so that the bed variations terms are as
important as advection terms [1; 2].
There has been much research in CFD into the e�cient solution of homogeneous systems

of conservation laws. The main focus has been put on the accurate representation of sharp
discontinuities such as shock waves in gases or hydraulic jumps in shallow �ows. More
recently, as numerical models become more complicated and the areas of application of these
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methods grow, it has become important that other aspects of the discretization be given due
attention. This is certainly true in the �eld of computational hydraulics where the modelling
can be dominated by the e�ects not only of source terms, but also of the propagation over
an initially dry and irregular bed.
The shallow water or St.Venant equations [3] are accepted for many practical applications

as properly modelling the unsteady �ow of water either in a one- or a two-dimensional
approach. They are the di�erential form of the conservation of mass and momentum [4].
There exist methods that have been developed to deal with the Euler equations that are able
to cope with complex systems of discontinuities and shock waves [5–8]. It is well known
that the non-linearity of the hyperbolic shallow water equations may render their solution
complicated, in the sense of giving rise to the appearance of discontinuities, which re�ect
physical phenomena such as hydraulic jumps and surges. New schemes have been reported
successful for �ow in channels [9; 10]. However, their application to river �ow and complex
geometries is not so common in the literature [11]. The presence of extreme slopes, high
roughness and strong changes in the irregular geometry represent a great di�culty that can
lead to important numerical errors presumably arising from the source terms of the equations
[1; 12]. The importance of the numerical discretization of these terms makes the interest of
increasing the order of accuracy of the basic advective scheme sometimes doubtful. This is
greater when the problem involves propagation over irregular dry beds.
In this work, a �rst-order advection scheme is adopted. It is a well known Godunov-type

scheme based on Roe’s approximate Riemann solver. For the sake of clarity, the governing
equations are �rst recalled in Section 2 and the main features of the method are outlined in
Section 3. Section 4 is devoted to the discussion of the discretization at the domain boundaries,
distinguishing between �xed and moving boundaries (wetting=drying fronts). The examples
presented in Section 5 are divided in one- and two-dimensional cases. They all show the
performance of the proposed technique.

2. GOVERNING EQUATIONS

2.1. 2D mathematical model

The two-dimensional shallow water equations, which represent mass and momentum conser-
vation in plane, can be obtained by depth averaging the Navier–Stokes equations. Neglecting
di�usion of momentum due to viscosity and turbulence, wind e�ects and the Coriolis term,
they form the following system of equations:

@U
@t
+
@F
@x
(U) +

@G
@y
(U)=S(x; y;U) (1)

in which,

U= (h; qx; qy)T

F=
(
qx;
q2x
h
+
gh2

2
;
qxqy
h

)T
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G=

(
qy;
qxqy
h
;
q2y
h
+
gh2

2

)T

where qx= uh and qy= vh. The variable h represents the water depth, g is the acceleration of
the gravity and (u; v) are the depth averaged components of the velocity u along the x and y
coordinates respectively. The source terms in the momentum equation are the bed slopes and
the friction losses along the two coordinate directions,

S=(0; gh(S0x − Sfx); gh(S0y − Sfy))T

where,

S0x=−@z
@x
; S0y=− @z

@y

and the friction losses in terms of the Manning’s roughness coe�cient [13]. It is useful to
rewrite Equation (1)

@U
@t
+∇ · E(U)=S(x; y;U) (2)

in which E=(F;G)T , since this displays the conservative character of the system in the
absence of source terms, and also in order to introduce the integral form of the equations
over a �xed volume �,

@
@t

∫
�
U d� +

∫
�
(∇ · E) d�=

∫
�
S d� (3)

This form of the equations of motion is more general and anticipates the �nite volume tech-
nique of discretization that will be applied. The application of Gauss’s theorem to the �ux
integral allows us to rewrite it as

@
@t

∫
�
U d� +

∮
@�
(E · n) ds=

∫
�
S d� (4)

where @� denotes the surface surrounding the volume � and n is the unit outward normal
vector.
A cell-centred �nite volume method will be formulated over a control volume where the de-

pendent variables of the system are represented as piecewise constants. In the two-dimensional
approach presented in this work, the spatial domain of integration is covered by a set of
quadrilateral or triangular cells, not necessarily aligned with the coordinate directions. A dis-
crete approximation to Equation (4) is applied in every cell �i so that the volume integrals
represent integrals over the area of the cell and the surface integrals represent the total �ux
through the cell boundaries. Denoting by Ui the average value of the conservative variables
over the volume �i at a given time, from Equation (4) the following conservation equation
can be written for every cell:

@Ui
@t
Ai +

∮
@�i
(E · n) ds=

∫
�
S d� (5)

where Ai is the area of the cell �i.
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The Jacobian matrix, Jn, of the normal �ux (E · n) is evaluated as

Jn=
@(E · n)
@U

=
@F
@U
nx +

@G
@U
ny

and can be expressed as

Jn=




0 nx ny

(gh− q2x
h2 )nx − qxqy

h2 ny
qy
h ny +

2qx
h nx

qx
h ny

(gh− q2y
h2 )ny − qxqy

h2 nx
qy
h nx

qx
h nx +

2qy
h ny




The eigenvalues of Jn are a representation of the characteristic speeds

�1 = unx + vny + c

�2 = unx + vny
�3 = unx + vny − c

(6)

where c=
√
gh is the celerity of the small amplitude surface waves.

The corresponding eigenvectors are

e1 =




1
u+ cnx
v+ cny


; e2 =




0
−cny
cnx


; e3 =




1
u− cnx
v− cny


 (7)

From its eigenvectors, two matrices P and P−1 can be constructed with the property that
they diagonalize the Jacobian Jn.

Jn=P�P−1

where � is a diagonal matrix with eigenvalues in the main diagonal.

2.2. 1D mathematical model

Many hydraulic situations can be described by means of a one-dimensional model, usually be-
cause a more detailed resolution is unnecessary. The equations governing the one-dimensional
model can be derived by simple suppression of the y components from Equation (1). This,
however, leads to a formulation containing only information per unit width, thus only valid
for simple cases. If a more general one-dimensional model is sought in which the full geom-
etry is retained, a second average on the width is required. Alternatively, the one-dimensional
formulation can be derived from mass and momentum control volume analysis [4]. The 1D
equations to model unsteady �ow in a channel of variable breadth and depth can then be
written in the form:

@U
@t
+
@F
@x
(x;U)=S(x;U) (8)
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with

U= (A;Q)T

F=
(
Q;
Q2

A
+ gI1

)T

S= (0; gI2 + gA(S0 − Sf))T

(9)

In Equation (9), A is the wetted cross-sectional area, Q is the discharge and I1 represents a
cross-sectional hydrostatic pressure force term

I1 =
∫ h(x; t)

0
(h− �)b(x; �) d�

in terms of the surface water level h(x; t) and the breadth:

b(x; �)=
@A(x; t)
@�

The pressure forces can have a component in the direction of the main stream (gI2) due to
the reaction of the walls in case of variations in shape along this direction. The amount of
this force depends on the cross-sectional variation for constant depth. It is important to note
that the validity of this approach is linked to the hypothesis of gradual variation. If sudden
expansions or contractions take place, the approach is not valid.
The mass force is the projection of the weight of the volume of water in the direction of

the stream. The bed slope is the derivative of the bottom elevation z and de�nes S0,

S0 =−@z(x)
@x

The friction term represents the action of the shear between the �uid and the solid walls.
Sf stands for the energy grade line and is de�ned, for example, in terms of the Manning’s
roughness coe�cient n [13].
In those cases in which F=F(U) it is possible to rewrite the conservative system in the

form

@U
@t
+ J

@U
@x
=S(x;U) (10)

The Jacobian matrix of the system (10) is

J=
@F
@U

=

(
0 1

c2 − u2 2u

)

where u=Q=A is the cross-section averaged water velocity and c=
√
gA=b. The eigenvalues

and eigenvectors of J are:

�1;2 = u± c

e1;2 = (1; u± c)T
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This form of the equations is particularly useful in the context of upwind schemes. Other
situations in which F=F(U; x) are studied in Garc��a-Navarro and V�azquez-Cend�on [14] and
Hubbard and Garc��a-Navarro [15].

3. NUMERICAL METHOD

Upwind schemes are based on the idea of discretizing the spatial derivatives so that infor-
mation is taken from the side it comes. Hence, a sense of propagation is implied and these
techniques are well adapted to advection dominated problems. When source terms are present,
it has previously been shown [1; 2; 14–16] that the �ux derivatives and the source terms have
to be discretized in a similar manner. The evaluation of �uxes and sources at the same local
state is important.
The �nite volume procedure de�ned in Section 2 is completely general. A mesh �xed in

time is assumed and the contour integral is approached via a mid-point rule, i.e., a numerical
�ux is de�ned at the mid-point of each edge, giving

∮
@�i
(E · n) ds ≈

NE∑
k=1
(E∗

k · nk) dsk (11)

where k represents the edge index of the cell �i ; NE is the total number of edges in the cell
(NE=3 for triangles, NE=4 for quadrilaterals). The vector nk is the unit outward normal,
dsk is the length of the side, and E∗

k =(F;G)
∗
k is the numerical �ux tensor. Di�erent imple-

mentations arise depending on the numerical scheme used and, consequently, on the numerical
�ux E∗. The technique is outlined for a 2D domain. 1D developments follow the same line
taking into account that in that case the outward normal n can have only the positive and
negative senses of the axis (NE=2).
The evaluation of the numerical �ux used in this work is based on the Riemann problem

de�ned by the conditions on the left and right sides of the cell edges. A 1D philosophy is
followed along the normal direction to the cell walls, making use of the normal numerical
�uxes. The de�nition of an approximated �ux Jacobian, J̃RL, constructed at the edges of the
cells is exploited here. Once this matrix has been de�ned, the numerical �ux across each
edge k of the computational cells �L on the left and �R on the right in a 2D domain is [17]

(F;G)∗ · n= 1
2
[(F;G)R · n+ (F;G)L · n − |J̃RL|(UR −UL)] (12)

Note that subscript k will be omitted for the sake of clarity and the following discussion
is referred to the cell side k. As suggested by Roe [8] the matrix J̃RL has the same shape as
Jn but is evaluated at an average state given by the quantities ũ=(ũ; ṽ) and c̃ which must be
calculated according to the matrix properties [17]:

1. J̃RL= J̃RL(UR;UL).
2. FR − FL= J̃RL(UR −UL):
3. J̃RL has a complete set of real and di�erent eigenvalues and eigenvectors.
4. J̃RL(UL;UL)=Jn(UL).
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The approximate Jacobian matrix is not directly used in the actual method. Instead, the
di�erence in the vector U across the grid edge is decomposed on the matrix eigenvectors
basis as

�U=UR −UL=
3∑
m=1
�mem (13)

where the expression of coe�cients �m are [17]:

�1;3 =
hR − hL
2

± 1
2c̃
[((hu)R − (hu)L)nx + ((hv)R − (hv)L)ny − (ũnx + ṽny)(hR − hL)]

�2 =
1
c̃
[((hv)R − (hv)L − ṽ(hR − hL))nx − ((hv)R − (hv)L − ũ(hR − hL))ny]

(14)

Matrix |J̃RL| is replaced by its eigenvalues and eigenvectors in the product |J̃RL|(UR −UL)
in the form

|J̃RL|(UR −UL)=
3∑
m=1

|�̃m|�mẽm (15)

From the eigenvalues of J, those of J̃RL have the form of Equation (6) and the eigenvectors
have the form of Equation (7), all in terms of average velocities and celerity. Enforcing the
second condition [17] of the matrix J̃RL the following expressions for ũ; ṽ and c̃ can be
obtained

ũ=
√
hRuR +

√
hLuL√

hR +
√
hL

; ṽ=
√
hRvR +

√
hLvL√

hR +
√
hL

; c̃=
√
g
2
(hR + hL) (16)

It has to be stressed at this point that in case of an advancing front over dry bed the
average velocities are calculated in the form

ũ=
uR + uL
2

; ṽ=
vR + vL
2

(17)

because the velocity values at the right or left cell are zero. This election is proposed by the
Q-scheme of Van Leer [12] for this situation. For example, if the right cell is a dry cell,
Equation (16) gives

ũ= uL; ṽ= vL (18)

and the front would advance with the total velocity of the wet cell instead of its average value.
However, the average value for the celerity is calculated always in the same form, otherwise
the balance between the �ux and the bed slope is not achieved in steady �ow leading to
numerical errors (see Section 4.2).
Expression (12) provides the numerical �ux normal to each edge of the computational so

that Equation (5) becomes

Un+1i =Uni −
�t
Ai

(
NE∑
k=1
E∗
k · nk dsk

)n
i

+�t
∫
�
S d� (19)
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This form of updating the variables via a numerical interface �ux is common in �nite
volume methods. It is less common, but also possible, to re-express Equation (19) in a
di�erent form by realizing that

�(E · n)= J̃RL�U= P̃�̃P̃−1�U= P̃(�̃+ + �̃−)P̃−1�U (20)

where �±=(� ± |�|)=2, and the previous decomposition represents the splitting of the gra-
dient in left and right travelling parts. For the updating of a single cell, only the in-going
contributions are taken into account so that the contour integral of the numerical normal �ux
is equivalent to the sum of these waves.

Un+1i =Uni −
�t
Ai

(
NE∑
k=1
(P̃�̃−P̃−1�U)k dsk

)n
i

+�t S∗ni (21)

For the numerical source, S∗, an approach of the integral of the source term S over the cell
has to be de�ned. First, it should be noted that the source term vector can be decomposed
in two di�erent parts that will be treated separately: the bottom variations S1 and the friction
term S2; S=S1 + S2.
An upwind approach has been adopted to model the bottom variations in order to ensure

the best balance with the �ux terms at least in steady cases. This procedure was studied in
detail by Berm�udez and V�azquez-Cend�on [1]. The �ux discretization in Equation (21) can be
used in the same way for the bottom slope terms because both contemplate the same spatial
derivative.
For every cell-edge k of cell �i the discrete source term is decomposed into inward and

outward contributions

S̃1k = S̃
1+
k + S̃1−k

being

S̃1±k = P̃(I ± |�̃|�̃−1)P̃−1S̃1k =
3∑
m=1
�m±ẽm (22)

The average value S̃1k computed with

S̃1k =




0

gh̃�zx
gh̃�zy



k

(23)

where h̃ consists of the average obtained from the depth values stored in the left and right
cell that share the same edge in each computational cell:

h̃=
1
2
(hR + hL) (24)

and the bed increments in each direction are computed in the form

�zx=−(zR − zL)nx; �zy=−(zR − zL)ny; n=(nx; ny) (25)
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For every cell �i the total contribution of the source terms is made of the sum of the parts
associated to inward normal velocity at every edge k

S̃1∗i =
NE∑
k=1
S̃1−k

For that reason we de�ne the numerical source term at cell-edge k as

S1∗k = S̃
1−
k

The expressions for the �− coe�cients are

�1−=
1
2c̃

(
1− |�1|

�1

)
(S21nx + S31ny)

�2−=
1
c̃

(
1− |�2|

�2

)
(−S21ny + S31nx)

�3−=
−1
2c̃

(
1− |�3|

�3

)
(S21nx + S31ny)




(26)

The average value, Equation (23), proposed in Berm�udez et al. [2] ensures a conservative
discretization of this source term. The friction term S2 is discretized in a pointwise manner

S2∗i =(S
2
i )
n (27)

so that the �nal expression for the numerical scheme is

Un+1i =Uni −
�t
Ai

(
NE∑
k=1
(E∗

k · nk dsk − AiS1∗k )
)n
i

+�t(S2)ni (28)

The stability criterion adopted has followed the usual in explicit �nite volumes [17] for the
homogeneous system of equations not including source terms. In practice, some restrictions
on the CFL can be observed due to the non-linearity of the system of equations or to the
presence of source terms. Theoretical studies on this question are still in development.

4. DOMAIN BOUNDARIES

The procedure described in the previous section is applied for the ordinary cells, that is,
those representing points at the interior of the wetted domain. The boundaries of the wetted
domain are de�ned by the cells not completely surrounded by other cells. All these cells
actually require the de�nition of suitable boundary conditions in order to reach the solution
of a problem. However, for transient �ows a distinction can be made considering either wetted
domains �xed in extension, that is, limited by vertical walls, or those whose size changes as
time progresses, that is, those involving sloping walls and moving boundaries.
In this work, boundary conditions are, strictly speaking, applied only at �xed boundaries.

The moving boundaries are considered as wetting fronts and hence included in the ordinary
cell procedure in a through calculation that assumes zero water depth for the dry cells. This
approach provides satisfactory results when dealing with wetting fronts over �at or downward
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sloping surfaces but can lead to di�culties in advances over adverse slopes. This is what
is called in this work the wetting=drying front. The procedure followed both for boundary
conditions and for wetting=drying fronts is next outlined.

4.1. Boundary conditions

As in any other boundary problem in computational �uid dynamics, there is �rst a question
concerning the number of physical boundary conditions required at every boundary point. To
help, the theory of characteristics in 2D tells us that, depending on both the value of the
normal velocity through the boundary

u · n= unx + vny (29)

and the local Froude number Fr=(u · n)=c, there are four possibilities as detailed in Hirsch
[5]:

(i) Supercritical in�ow: u · n6− c⇒ all the variables must be imposed.
(ii) Subcritical in�ow: −c¡u · n60⇒ two variables must be imposed.
(iii) Supercritical out�ow: u · n¿c⇒ none of the variables must be imposed.
(iv) Subcritical out�ow: 0¡u · n6c⇒ one variable must be imposed.

A second question is related to the procedure used to obtain numerical boundary conditions
[5]. In the work presented here, the idea of using a Riemann solver to calculate the �ux at the
edges of a cell has also been used at the boundaries. The variables are stored at the center of
each cell and the boundary conditions are also imposed there, in boundary cells. The value of
the variables not prescribed is calculated from a usual �nite volume balance. For this purpose,
the �uxes across the edges lying on the boundary are estimated by means of a ‘ghost’ outside
cell. Usually, the ghost cell just duplicates the boundary cell. When the boundary is a solid
wall, the ghost cell is a mirror cell in which the depth of water has the same value as the
boundary cell and the velocities have the opposite sign. Speci�c values of the input boundary
conditions in each case are detailed in Section 5. In all the examples presented, the domain
is closed almost everywhere. At the out�ow points, a free �ow condition is assumed and this
is modelled by means of a supercritical-type boundary condition.

4.2. Wetting=drying fronts

The wetting front advance over a dry bed is a moving boundary problem in the context of
a depth averaged two-dimensional model. As such, the optimum way to deal with it is to
�nd the physical law that best de�nes the dynamics of the advancing front to use it as the
physical boundary condition to be plugged into the above procedure. The question about that
physical law makes us reconsider the 3D basic equations at the wetting front position. In
advance over adverse dry bed the water column tends to zero smoothly and, hence, the free
surface and bottom level tend to reduce to one point where both the free surface and bottom
boundary conditions apply simultaneously [18]. This line of reasoning, being interesting, does
not solve the discrete problem in a simple way but, on the contrary, leads to the generation of
an alternative technique for a number of cells that increases in time as the wetting progresses.
In a di�erent approach closer to the discrete solution, wetting fronts over dry surfaces can

be reduced to Riemann problems in which one of the initial depths is zero. This problem can
be analytically studied for simpli�ed conditions and the solution exists both for horizontal

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:247–275



ID AND 2D MODELLING OF SHALLOW WATER FLOW 257

Figure 1. Steady wetting=drying fronts over adverse steep slopes in real and discrete representations.

bed (Ritter solution) [19] and for sloping bed [20]. The solution in the latter case, when
dealing with adverse slopes, identi�es a subset of conditions incompatible with �uid motion
(stopping �ow). On the other hand, the numerical technique described in Section 3 is an
approximate Riemann solver adapted to cope with zero depth cells which provides a discrete
solution to the problem in all these cases not identifying correctly the stopping �ow conditions.
Therefore, this technique is unable to solve correctly situations of still water in a domain of
irregular shape, generating spurious velocities in the wet=dry contour and often violating mass
conservation.
Previous works on this topic have reached this point and some authors working with �nite

elements solve the problem allowing the controlled use of negative depths [21–23]. In �nite
volumes, in an attempt to blend the two points of view generating at the same time a simple
and e�cient rule for this situation, the following steps are proposed. In the upper part of
Figure 1 water and bottom surface are plotted and at the lower part their discrete representation
with constant functions z and H over the cells. First of all, and with reference to Figure 1, the
variable H = h+ z is compared between any two cells de�ning a wetting front over adverse
slope and two situations can be found:

(i) HL¡HR. This corresponds to the stopping conditions and hence something has to be
done to modify the basic procedure.

(ii) HL ¿ HR. Nothing has to be done. The basic Riemann solver in the numerical scheme
provides a satisfactory solution.

Some authors propose a solid wall treatment in the case HL¡HR [24; 25]. This option
does not prove optimal since imposing zero velocity does not guarantee that the �rst equation
(mass equation) is ful�lled generating inaccurate jumps in water depth. Instead, an alternative
is adapted here forcing the mass balance by means of a modi�cation of the bed slope. For
the sake of simplicity in the discussion, let us consider a one-dimensional case of still water
(u= v=0). With reference to Figure 2, assume that the stopping condition occurs at the cell
interface LR. It can be seen following Berm�udez et al. [2] that the discretization of the mass
equation to ensure still water steady state at the interface LR, that is, the �ux and source
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Figure 2. Modi�cation of the bed slope in steady wetting=drying fronts over adverse steep slopes in
real and discrete representations.

discretizations must balance:

−�t
Ai

(
NE∑
k=1
(E∗

k · nk dsk − AiS1∗k )
)n
i

+�t(S2)ni =0 (30)

This balance leads to the equilibrium condition:

(�H)LR=0⇒ (�z)LR= − (�h)LR (31)

This condition is not always ful�lled due to the piecewise constant representation of the
variables in which the bottom level and water depth are stored at the centre of the cells
in the numerical model. At the interface LR (Figure 2) a situation is possible in which
(�z)LR �=−(�h)LR leading to numerical velocities without physical meaning (Figure 10). The
steady �ow problem is converted into an unsteady one producing movement in water that
should be always at steady state and mass conservation is lost.
The above requirement (Equation (31)) can also be written

hR − hL= zL − zR⇒ hR= hL − (zR − zL)¡0
thus predicting the appearance of negative depths at the outside of the wetted domain. In a
di�erent approach, and in order to avoid the numerical error, the technique proposed here is
to enforce the local rede�nition of the bottom level di�erence at the interface to ful�l the
equilibrium condition (31) and therefore mass conservation (Figure 2 right):

zmodR = zL − (hR − hL) ⇔ (�z)modRL =−(hR − hL) (32)

In unsteady cases, i.e., for wetting fronts advancing over an adverse dry slope, the procedure
followed is the same. However, in this case the numerical representation of the slope between
the two adjacent cells may produce a too rapid propagation of the front. It is necessary to
reduce to zero the velocity components u; v at the interface LR; otherwise some water could
easily jump to the dry upper cell.
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5. APPLICATIONS

5.1. Simulation of a tidal wave over an adverse not constant slope

The �rst example is a test proposed by Heniche et al. [21]. It reproduces the movement driven
by a tidal wave into the variable slope shoreline in a rectangular channel. The length of the
channel is 500m and the width 25m. The bed slope in the x direction is: −0:001 in the �rst
100 m, −0:01 between 100 m and 200 m and −0:001 between 200 m and 500 m of the reach
of the channel. It is assumed horizontal in the y direction. A steady state with H =1:75 m
of quiescent water depth is considered as the initial condition. The �xed boundaries are solid
walls except the inlet located at x=500 m. In�ow boundary conditions are associated with
the variation of the water depth in time with the tidal wave in the form

h(500; t)= h0 + � cos
(
2�
t
T

)
(33)

where h0 = 1m is the reference water level, �=0:75m is the amplitude of the tidal wave and
T =60 min is the period of the cycle. The physical domain has been discretized with constant
intervals �x=5m. The Manning roughness coe�cient takes the value n=0:03.
In Figure 3 the di�erences in the solution of the water depth when using or not the wetting–

drying condition proposed here are shown. For this purpose, a representation of the water depth

Figure 3. Water depth at time T =24 min (a; b) and T =36 min (c; d) over the bed slope when the
wetting–drying condition is not used (a; c) and when it is used (b; d) in the simulation of a tidal wave
over an adverse, not constant, slope. Coarse line represents bottom surface and �ne line free surface.
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Figure 4. Snapshots of the advance=recession of the wetting=drying front over the
bottom at time: T =0; 12; 24; 36; 48 and 54 min in the simulation of a tidal wave over

an adverse not constant slope.

at time T =24 min and T =36 min when the wetting–drying condition is not used (a,c)
and when it is used (b,d) is presented. In Figure 4 a set of pro�les showing the time
evolution of the advance=recession of the wetting=drying front caused by the tidal wave
over the adverse variable slope is presented. These results, using the wetting=drying con-
dition proposed here, can be seen to compare favourably with those obtained by Heniche
et al. [21] who use a completely di�erent technique based on �nite element
methods.
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Figure 5. Geometry of the experimental model in the simulation of a dam break
and advance over a triangular obstacle.

Figure 6. Location of the gauging points in the experimental model for the simulation of a dam break
and advance over a triangular obstacle.

5.2. Dam break and advance over a triangular obstacle

In the second example, numerical results are compared with experimental data obtained
from the Recherches Hydrauliques Lab. Châtelet together with the University of Bruxelles
(Belgium) under the supervision of J.M. Hiver. The test case deals with the evolution of a
dam-break wave over a triangular obstacle. The channel geometry is presented in Figure 5.
The physical model combines a reservoir connected to a rectangular channel. The length of
the entire model is 22:5m. The dam is situated at x=15:5m. A triangular obstacle (6m long,
0:4m high) is situated 13m downstream the dam over the bed of the channel. The slopes of
the obstacle are symmetric. The initial conditions considered are 0:75m of water depth in the
reservoir and dry bed in the rest of the channel. The �xed boundaries are solid walls except
for the free outlet. The Manning roughness coe�cient is 0.0125 for the bed and 0.011 for
the vertical walls of the rectangular channel, values supplied by the experimentalists from a
steady �ow test case.
The predicted and measured water depth time evolution during 40 s at the gauging points

(Figure 6) situated in: G4 at 4 m, G10 at 10 m, G11 at 11 m, G13 at 13 m and G20 at 20 m
are shown in (Figure 7). The next �gure (Figure 8) compares the numerical results obtained
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Figure 7. Time evolution during 40 s of the water depth measured and computed at gauging points:
G4, G10, G11, G13 and G20 in the simulation of a dam break and advance over a triangular obstacle.

Points stand for experimental measures and solid line for numerical results.
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Figure 8. Numerical results obtained with a 1D and a 2D scheme on the water depth pro�les along
the channel at times: T =3; 5; 10 and 20 s in the simulation of a dam break and advance over a

triangular obstacle.

for the water depth at di�erent times T =3 s; 5 s; 10 s and 20 s from the 1D and 2D numerical
schemes to check the coherence of both schemes. The coincidence of the numerical results
obtained with both schemes can be observed, as expected, due to the marked one-dimensional
character of the �ow. Comparisons of numerical results using or not the wetting=drying condi-
tion are not shown in the �gures because the di�erences were insigni�cant. The concordance
between the experimental and numerical results is also satisfactory. At the gauging points
located before the obstacle, the prediction of the arrival time of the wave as well as the water
depth is good. Point G13 is located at the vertex of the obstacle and therefore is a critical
point. It can be observed that the prediction of the transitions from wet to dry is correct. At
the last point we can observe a little disagreement between measures and numerical results
but the amount of water is insigni�cant.
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Figure 9. Iso-contour water levels and velocity �eld (a; b) and free surface (c; d) of steady state in a
closed pool with a partially covered bump using an upwind (a; c) and a pointwise (b; d) discretization

in the propagation of a smooth wave over a bump test case.

5.3. Propagation of a smooth wave over a bump

The numerical experiment takes place in a square pool 1 m× 1 m. At the centre of
the pool a symmetric bump in the bottom is mathematically de�ned in the
form

z(x; y)= max

[
0:; 0:25− 5 ∗

((
x − 1

2

)2
+
(
y − 1

2

)2)]
(34)

The ability of the method to preserve the initial steady state in time is analysed. We start
from still water as the initial condition covering partially the bump in a frictionless domain
fully closed by vertical walls.

H =0:1 m; u=0m s−1; v=0m s−1 (35)

Figure 9 shows the numerical results when the bed slope is discretized with a pointwise
(central) or with an upwind discretization using the wetting=drying condition proposed in
Section 4.2. The mesh used is the same for both cases with 1600 quadrilateral cells. Once
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initial still water conditions are speci�ed, the steady state must be conserved. If the bed slope
discretization has been correctly made no change in the free surface or in the velocity �eld
(always zero) must be observed, because there are no external forces that could produce any
movement. The upper �gures in Figure 9 show the iso-contour water levels together with the
velocity �eld. The lower �gures show the free surface. On the left the results obtained with
the upwind discretization using the wetting=drying condition are shown and on the right the
same results using a pointwise approximation for the bed slope source terms are represented.
The di�erences are obvious. It is signi�cant how the initial value of the velocity components

is conserved in case of using the upwind discretization because the initial state is conserved
exactly while spurious velocities appear; they originated from the numerical approximation,
when a pointwise discretization for the bed slope is used. The necessity of upwinding the
source terms corresponding to the bottom variations is noted here and not doing so can lead
to important numerical errors. With this discretization Property-C de�ned in References [1]
and [2] for the one and two dimensional cases respectively, is veri�ed also in the steady
wetting=drying front.
Next, assuming the necessity of an upwind discretization of the bottom variation, the in�u-

ence of the wetting–drying condition alone is studied. The upper plots in Figure 10 show the
iso-contour water levels together with the velocity �eld. Lower �gures show the free surface.
On the left the results are obtained using the wetting–drying condition stated in Section 4.2
while on the right no special wetting–drying condition is used. It can be seen that water easily
jumps over the bump in the latter case showing that the wetting–drying condition is necessary
to preserve the steady state, directly related with mass conservation.

5.4. Non-symmetric dam break in a pool with a pyramidal obstacle

The physical model was built at the Hydraulic Lab. of CITEEC (Spain) under the super
vision of J. Puertas. The model consists of a closed pool separated in two parts by a solid
wall where a gate (dam) is located in a non-symmetric place (Figure 11).
The walls surrounding the pool and the wall separation are made of concrete, there is

no possibility of out�ow and the bed is �at. The experimental–numerical comparison has
been chosen among all the experiments carried out with di�erent initial situations. The essay
corresponds to the initial depth of water relationship: 0:5=0:1m. The mesh used is a triangular
unstructured one with 2625 cells. The CFL condition is 0.8. In Figure 12 experimental data
and numerical results are compared on the time evolution of water depth during 20 s at the
gauging points: S0; S1; S2 around the pyramidal obstacle to check the wetting=drying condition,
P6; P7 and P18 in which the propagation of the wave generated by the dam break can be
observed.
There exists a small di�erence on the numerical results in this case of water depth when

using or not the wetting=drying condition. The point far from the pyramid, P18, is not much
a�ected by the wetting=drying e�ect over the obstacle and only a curve is included in the
plot for clarity. Di�erences on water depth appear near the obstacle: small peaks of water
appear in the �rst 5 s as can be observed in S1. The propagation of the arrival front is well
predicted and independent of the wetting=drying condition but both curves (with and without
wetting=drying condition) diverge when time evolves.
Analysis of mass conservation has been carried out in this case. Mass conservation errors

have been computed taking into account initial mass volume (Vi), �nal mass volume (Vf) and
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Figure 10. Iso-contour water levels and velocity �eld (a; b) and free surface (c; d) of steady state in
the same test case using (a; c) and not using (b; d) the wetting=drying condition proposed here in the

propagation of a smooth wave over a bump test case.

water in�ow discharge volume (QI) in the form

mass error (%)=
Vi +QI − Vf
Vi +QI

(36)

A comparison of the time evolution of mass error using or not the wetting–drying condition
proposed in Section 4.2 is shown in Figure 13.

5.5. Dam break on a channel with three mounds on its bottom

In this test case, the treatment of moving boundaries separating wetting from drying zones
is validated in the simulation of a �ow generated by a dam break through a channel which
contains three mounds on its bottom as proposed by Kawahara and Umetsu [22]. Figure 14
shows the bottom levels in terms of contour and bottom surface plots together with the
geometry of the channel.
The length of the channel is 75 m and its width 30m. Boundary �xed conditions are solid

walls. Initial conditions are those of dry bed. The dam is situated at x=16 m containing
900 m3 of water. A mesh discretization with 1744 triangular unstructured cells is used. The
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Figure 11. Plane view of the physical model which simulates a non-symmetric dam break
in a pool with a pyramidal obstacle.

Manning coe�cient is 0.018. Numerical results are represented in Figure 15 where water
depth iso-contours, velocity �eld and free surface over the bottom are represented at di�erent
times T =2; 6; 12 and 300s to show the propagation of the �ood till steady state is recovered.
Mass losses are controlled.
The small mounds are covered by the �ow in its propagation and the e�ect of advancing and

recession over the sloppy bed is clear. The higher mound is always dry and the accumulation
of water is clearly observed. Symmetry along the �ow and the re�ected front created by the
collision of the advancing front with the mounds is shown. The time evolution of mass error
is shown in Figure 16 if no wetting=drying condition is used and when it is used. It can be
noticed that mass error values have increased respect to test 5.4, as we can expect because
in this case advance takes place over the initially dry bed while in the other case all the pool
was initially wet.

5.6. Propagation of a �ood wave in the Toce river physical model

In this last test we would like to remark the necessity of including the wetting=drying condition
in the computation of �oods over irregular geometries. The above tests have demonstrated
the di�erences observed when using or not the technique proposed for wetting=drying fronts
in simple cases: smooth bed slopes, low values of Manning roughness coe�cient, etc... . In
this case, the technique has been applied to the simulation of a �ood wave in the Toce
river physical model. This model is a simpli�ed one, built in ENEL (Italy), representing
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Figure 12. Experimental data and numerical results on the time evolution of water depth
during 20s at the measuring points located in Figure 11 in the simulation of a non-symmetric

dam break in a pool with a pyramidal obstacle.
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Figure 13. Time evolution during 20 s of mass error using or not the wetting=drying condition in the
simulation of a non-symmetric dam break in a pool with a pyramidal obstacle.

Figure 14. Geometry of the test in iso-contour and free surface representation of the bottom which
involves a dam break simulation on a channel with three mounds on its bottom.

the �rst 5 km reach of the Toce river, located in the Northern Italian Alps. The length
scale of the model is 1:100 and the total area of the experimental facility is 55× 13 m. It
reproduces many details of the real topography such as river bed, an empty reservoir located
half reach of the total length of the model. This reservoir represents a big obstacle which
causes the �ow to bend round it and enter in it after reaching its height. The �ood wave is
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Figure 15. Propagation of water depth over the mounds provoked by a dam break in iso-contour,
velocity �eld and free surface representation at times: T =2; 6; 12 and 300 s.
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Figure 16. Time evolution during 400 s of mass error using or not the wetting=drying condition in the
simulation of a dam break on a channel with three mounds on its bottom.

Figure 17. Geometry of the Toce river physical model.

simulated by the abrupt raise of water level contained in an upstream-located tank. Before
the computation, an adaptation of the digital geometry supplied by ENEL to the one needed
in the numerical unstructured code was carried out by means of a linear interpolation. In
Figure 17 the geometry of the model is shown. Boundary upstream conditions are �xed by a
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Figure 18. Propagation of a �ood wave over the Toce river physical mode at time T =12 (a; b) and
21 s (c; d) when the wetting=drying condition is not used (a; c) and when it is used (b; d).

hydrograph and a limnigraph supplied by ENEL and downstream boundary conditions are let
free. The valley remains initially dry. It is worth noting that Manning roughness coe�cient
is so high (n=0:0162) that an implicit discretization of the friction term was necessary to
stabilize the computations.
At the same time the model became �ooded, depths of water were measured at selected

points in the model. Consistent with the aim of evaluating the performance of the numerical
methods, the calculated depths of water at these stations were compared with the experimental
ones [26] to know how correctly the �ooding was simulated and the amount of con�dence
that can be put in the predictive capacity of the simulation methods. The general form of the
computed–measured depth-time curves agree quite well [26] till the �ood passes the reservoir
where a bridge is included in the model but not in the simulation. Only one of the �gures
comparing measured data and numerical results is shown here and the rest can be seen in
Brufau [26]. In Figure 18 two comparisons of the �ood propagation at two times are shown in
iso-contour plots with the same colour scale when the wetting=drying condition is used or not.
The di�erences in time of �ood propagation and water depth are clear at the �gures leading
to mass errors when the wetting=drying condition is not used in the computations. The water
level is higher in case the wetting=drying condition is not used, as we could expect from the
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Figure 19. Comparison of experimental and numerical results using or not the wetting=drying condition
on the time evolution of the free surface at P9 in the Toce river physical model.

other tests. In this simulation, the improvement is clearer due to the irregularity of the bottom
and slopes. At 21 s in (d) water is beginning to enter the reservoir while in (c) the reservoir
is almost covered because the method is not able to treat the wall surrounding the reservoir
correctly and water easily jumps into it. Experimental measures reveal the agreement with
numerical results obtained using the wetting=drying condition in the time evolution of water
depth at a station installed near the reservoir P9 (Figure 19). In Figure 20 time evolution of
mass error is compared when the wetting=drying condition is or not used.

6. CONCLUSIONS

A �rst order upwind scheme has been used to solve one- and two-dimensional problems
on steady and unsteady free surface �ows. The physical domain has been discretized on
structured and unstructured meshes. Source terms representing bed slopes in the equations are
determinant in the simulation of �ow over irregular geometries. The same upwind approach
used on the �ux derivatives has been adopted to model the bottom variations to ensure their
right balance so as to reproduce steady state exactly. Boundary conditions are divided into
�xed and moving. Moving boundaries are considered as wetting fronts and hence included
in the ordinary cell procedure in a through calculation that assumes zero water depth for
the dry cells. A numerical technique based on the discrete form of the mass conservation
equation which guarantees steady state at the wet=dry front has been proposed in this work to
avoid di�culties in advances over adverse slopes. Finally, some results have been presented in
di�erent situations of steady and unsteady �ow to test the performance. A simple modi�cation
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Figure 20. Time evolution during 21 s of mass error using or not the wetting=drying condition on the
propagation of a �ood wave in the Toce river physical model.

of the basic upwind method improves the numerical solution so that the �ow propagation over
initially dry bed does not constitute an extra numerical source of error. Instead, it may reduce
remarkably the mass conservation error in practical applications such as river �ow problems.
The numerical technique is validated with the successful comparison between the numerical
results and the experimental data as we have shown in some applications.
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